一、个人简介
闫金亮,男,1979年10月出生。2010年获南京师范大学计算数学硕士学位。2016年获南京师范大学计算数学博士学位。近几年,闫金亮老师一直从事偏微分方程数值解法与保结构算法的研究。研究内容涵盖偏微分方程的高精度保能量算法、守恒有限体积元算法、两网格有限体积元算法、高精度迎风有限体积元算法等方面. 近几年申请者在《Computer Physics Communications》、《Numerical Algorithms》、《Mathematical Methods in the Applied Sciences》、《Applied Mathematical Modelling》、《Numerical Functional Analysis and Optimization》等国内外杂志上发表学术论文20余篇, 其中在SCI及EI刊物上发表学术论文16篇, 主持福建省教育厅A类项目1项,江苏省重点实验室开放课题1项,福建省自然基金面上项目2项,参与国家自然基金地区项目1项,2023年入选福建省C类人才。
二、研究方向
偏微分方程数值解
三、可招收研究生的层次、学科专业
硕士研究生、数学
四、主要教科研成果
1、承担科研项目
(1)福建省自然科学基金, 2019J01831,浅水波方程高精度保结构有限体积元算法的构造及应用研究, 2019.07-2022.07,已结项,主持;
(2)福建省自然科学基金, 2023J011058,守恒或耗散性偏微分方程高效保能量算法的构造与应用, 2023.08-2026.08,在研,主持.
2、发表的文章
[1] J. L. Yan and Z. Y. Zhang. New energy-preserving schemes using Hamiltonian Boundary Value and Fourier pseudospectral methods for the numerical solution of “good” Boussinesq equation. Computer Physics Communications, 201(2016), 33–42.【SCI收录】
[2] J. L. Yan, Q. Zhang and Z. Y. Zhang. A new high-order energy-preserving scheme for the modified Korteweg-de Vries equation. Numerical Algorithms, 74(2017), 659-674.【SCI收录】
[3] J. L. Yan, Q. Zhang and Z. Y. Zhang. New conservative finite volume element schemes for the modified Korteweg-de Vries equation. Mathematical Methods in the Applied Sciences, 39(2016), 5149-5161.【SCI收录】
[4] J. L. Yan, M. C. Lai, Z. L. Li and Z. Y. Zhang. New conservative finite volume element schemes for the modified regularized long wave equation. Advances in Applied Mathematics and Mechanics, 9(2)(2017), 250-271.【SCI收录】
[5] J. L. Yan, Q. Zhang, L. Zhu and Z. Y. Zhang. Two-grid methods for finite volume element approximations of nonlinear Sobolev equations. Numerical Functional Analysis and Optimization, 37(3)(2016), 391-414.【SCI收录】
[6] Q. Zhang, J. L. Yan and Z. Y. Zhang. High-order upwind finite volume element method for the first-order hyperbolic optimal control problems. ANZIAM Journal, 57(2016), 482-498.【SCI收录】
[7] J. L. Yan and L.H. Zheng, Conservative finite volume element schemes for the complex modified Korteweg-de Vries equation, International Journal of Applied Mathematics and Computer Science, 27(3)(2017),515-525.【SCI收录】
[8] J. L. Yan, T. J. Zhao, Z. Y. Zhang, and D. Liang. High-order energy-preserving schemes for the improved Boussinesq equation, Numerical methods for Partial Differential Equations,34(4)(2018),1145-1165.【SCI收录】
[9] J. L. Yan, L. H. Zheng, and Z. Y. Zhang. A linear energy-preserving finite volume element method for the improved Korteweg-de Vries equation. Physics of Wave Phenomena, 26(3)(2018), 243-258.【SCI收录】
[10] J. L. Yan and L. H. Zheng, A class of momentum-preserving finite difference schemes for the Korteweg-de Vries equation, Computational Mathematics and Mathematical Physics, 59(10)(2019),1582-1596.【SCI收录】
[11] J. L. Yan, D. W. Deng, F. Q. Lu and Z. Y. Zhang, A new efficient energy-preserving finite volume element scheme for the improved Boussinesq equation, Applied Mathematical Modelling, 87 (2020),20-41.【SCI收录】
[12] J. L. Yan, D. W. Deng, F. Q. Lu and Z. Y. Zhang, Linearly implicit energy-preserving Fourier pseudospectral schemes for the complex modified Korteweg-de Vries equation, ANZIAM Journal, 62 (2020),256-273.【SCI收录】
[13] J.L. Yan, L. Zhu, F.Q. Lu, S.H. Zheng, Linearly implicit and second-order energy-preserving schemes for the modified Korteweg-de Vries equation, Numerical Algorithms, 91(2022), 1511-1546.
[14] J. L. Yan, L. H. Zheng, F.Q. Lu,Q.Y. Zhang,Efficient energy-preserving methods for the Schrödinger-Boussinesq equation, Mathematical Methods in the Applied Sciences,2022, doi: 10.1002/mma.8574.
五、联系方式: 电话:15859904950,邮箱:yanjinliang3333@163.com